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Abstract  Cutting force is one among the basic factors, which measure the machinability of any 
material and decide on power required for machining. Experimental techniques are more 
commonly used to measure the cutting forces developed during machining. The present work is an 
attempt being made to save the time and expenses involved in experimentation. A Multi-layer 
Perceptron Feed Forward neural network is constructed to evaluate the cutting forces developed 
during the machining of Glass/ Epoxy composite material. There are many parameters, which have 
an effect on cutting forces. In view of minimizing the input variables, only three parameters having 
predominant effect were considered in this work. A finite element model was developed to evaluate 
the cutting forces and train the network. The neural network output results have shown good 
agreement with the results obtained from the modified Merchant’s equation. The neural network 
outputs were compared with the desired output values; it was observed that maximum error 
reduction is possible. 
 
 

INTRODUCTION 
 
   Fibre reinforced plastic (FRP) composite materials 
possess high strength and stiffness to weight ratio than 
the common structural materials and are extensively 
used in automobile, aircrafts, space vehicles, marine and 
general engineering applications. Despite the recent 
developments in the near net shape manufacturing, 
composite parts often require post-mold machining to 
meet dimensional tolerance, surface quality and other 
functional requirements. Cutting force is one among the 
basic factors, which measure the machinability of any 
material and decide on power required for machining. 
The determination of cutting forces by experimental 
means is more commonly adopted. However conducting 
an experiment to measure these forces every time is 
highly expensive and time consuming. Also in some 
cases, particularly in machining composites, preparing 
specimens with the required specifications is extremely 
difficult. To circumvent these difficulties, an effective 
orthogonal cutting model is needed to determine the 
cutting forces developed during machining of FRP 
materials.  
    
   In this work a Multi-layer Perceptron Feed Forward 
neural network is constructed to evaluate the cutting 
forces developed during the machining of Glass/ Epoxy 
composite material. The fibre orientation, fibre 
percentage and depth of cut were chosen as the input 
parameter for this purpose. There are many parameters, 
which have an effect on cutting forces. In view of 

minimizing the input variables, only three parameters 
having predominant effect were considered in this work. 
An FEA model was developed to evaluate the cutting 
force and feed force and to train the neural network. 
 
   Many of the literatures revealed that the selection of 
parameters for artificial neural network (ANN) is a 
major problem. Dornfeld et.al [2] reported that the 
parameters of the network have to be carefully selected 
for the precise output of the network. Dimla et al [3] 
have experimented different Perception networks with 
5, 10, 20  hidden nodes by keeping the learning rate 
parameters and momentum factors as constant and 
achieved good success rate with more number of hidden 
nodes. However this has been contradicted by Yao and 
Fang [4]. They revealed that it is misleading to say that 
more hidden nodes will improve the performance and 
generally the number of hidden nodes is a critical and 
complicated factor. 
 
   In the present work 16 training patterns are 
considered. Suitable scale factor is chosen for the input 
variables to train the network. After attaining 
convergence, the trained weights are fed into the testing 
network model which is similar to that of training 
network except having only the capacity to determine 
the outputs for the corresponding input variables. It is 
observed that the output results of the neural network 
have shown good agreement with the modified 
Merchants model. Further the neural network outputs 
were compared with the desired output values, the 
errors were found to be almost converging. 
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MULTILAYER PERCEPTRON 
 
   The general architecture of a 3-layerd Perceptron is 
shown in fig.1. Multi-layered Perceptron (MLP) uses a 
Back-Propagation Algorithm (BPA) for training the 
network in a supervised manner. BPA is a steepest-
decent method, where weight values are adjusted in an 
iterative fashion while moving along the error surface to 
arrive at minimal range of error when input patterns 
presented to the network for the learning. The learning 
process consists of two passes through different layers 
of the network, a forward pass and a backward pass. In 
the forward pass, the input pattern is applied to the 
nodes of the input layer and its effect propagates 
through the network, layer by layer. During the forward 
pass, synaptic weights are all fixed. The error, which is 
the difference between the actual output of the network 
and the desired output, is propagated back through 
backward pass to update the synaptic weights. The 
weights are continuously updated every time when the 
input patterns are presented to the network, the process 
continues till the actual output of the network comes 
closer to the desired output. If all the input patterns are 
propagated once through the network, it is called as 
cycle or epoch.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Steps involved in feed forward neural network 
technique [5] 
 
Step 1: Decide the number of hidden layers. 
 
Step 2: Decide the number of neurons for the input 
layer and for the output layer. For input layer the 
number of neurons is equal to the number of input 
variables and for output layer it is equal to the number 
of outputs required. Set small number of neurons for the 
hidden layer. 
 
Step 3: Get the training input pattern. 
 
Step 4: Assign small weight values for the neurons 
connected in between the input, hidden and output 
layers. 
 
Step 5: Calculate the output for all the neurons in 
hidden and output layers using the following formula. 

 Outi = f(neti) = f ( Σ wij Outj + θ i). 
 
Here, Outi is the output of the ith neuron in the layer 
under consideration, outj is the output of the jth neuron in 
the preceding layer. f is the sigmoid function that can be 
expressed as,  
 
    f(netI) = 1/ ( 1+ e –neti / q ). q is termed as temperature. 
 
Step 6: Determine the outputs at the output layer and 
compare these results with the desired output values to 
evaluate the error of the output neurons, 
 Error = desired output- actual output. 
Similarly determine the root mean square error value of 
the output neurons.  

 
E p =  ½  Σ ( t pj – o pj )2. 

 
   Where Ep is the error for the pth presentation vector, tpj 
is the desired value for the jth output neuron (i.e. the 
training set value)  and opj is the desired output of the jth 

output neuron. 
 
Step 7: Determine the error available at the neurons of 
the hidden layer and back -propagate these errors to the 
weight values connected in between the neurons of 
hidden layer and input layer. Similarly, back-propagate 
the errors available at the output neurons to the weight 
values connected in between the neurons of hidden layer 
and output layer using the following formula. 
    
Error   δpj =( tpj – Opj ) Opj (1- Opj)   for output neurons. 
Error   δpj =( tpj – Opj ) Opj Σ δpk w kj for hidden neurons. 
 
Weight adjustment is made as follows, 
 ∆ wji (n+1) = η (δpj Opi) + α∆wji (n). 

η- Learning rate parameter. 
α- Momentum. 

 
Step 8: Go to step 3 and do the calculations from step 3 
to step 7. Check whether it has reached at the end of 
cycle, if so determine the root mean square error value, 
mean percentage of error and worst percentage of error 
over the complete patterns. Check whether the error is 
reasonable, if yes go to step 9 otherwise go to step3 and 
repeat the cycle from step 3 to step7. 
 
Step 9: Stop the iteration and note the final weight 
values attached to the hidden and output layer neurons. 
 
Step 10: Test the neural network model with the trained 
weight values. Determine the output values for the 
testing pattern and check whether the deviation from 
desired value is reasonably less. If no, try the back-
propagation with the revised network by changing the 
number of neurons, altering learning rate parameter, 
altering momentum value and altering temperature 
value.  
 
 

Fig.1. Multi-layered Perceptron 
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NEURAL NETWORK MODEL 
 
   An FEA approach has been used to evaluate the 
cutting forces and feed forces developed during the 
orthogonal cutting of Glass/Epoxy composite material 
for varied fibre percentage, fibre orientation and depth 
of cut (doc). These forces were used to train the 
network. In the network construction the number of 
hidden neurons, learning rate parameter, temperature are 
unknown values and these values are determined by trial 
and error. The network configuration of MLP usually 
consists of an input layer, one or more hidden layers and 
an output layer. It has been proved that one hidden layer 
is enough to approximate any continuous function [3]. 
More number of hidden layers proved to be 
counterproductive, it may cause slower convergence in 
the back propagation algorithm. Initially the number of 
hidden neurons increased from 2 to 10 and the network 
is trained for hidden neurons 2,4,6 and10 with the 
combination of learning rate parameter (η=1.2) and 
momentum factor (α=0.9). The convergence is checked 
for each hidden neuron, the minimum error occurred for 
the network constructed with 6 number of hidden 
neurons.  This variation of error with number of neurons 
is shown in table.1. Thus the network configuration of 
3-6-2 is used. 
 

Table 1: Variation of error with neurons for 
glass/epoxy 
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∆ wji (n+1) = η (δpj Opi) + α∆wji (n). 
η- Learning rate parameter. 
α- Momentum. 

 
   Referring to the above equations, it can be seen that 
weight values at any given instant of cycle depends on 
its previous value and a factor influenced by η and α. In 
this network model α is maintained constant as 0.9.The 
learning rate parameter is varied from 0.2 to 1.3, the 
minimum error occurred for the learning rate parameter 
as 1.2. This effect of learning rate parameter over the 
error value is shown in table.2.  
 

Table 2: Variation of error with learning rate 
parameter for glass/epoxy 

 

   
   Finally the effect of temperature value is checked, the 
change in temperature changes the sigmoid function. 

 

 0.001822 0.000005 2.99 15.85 
 
 No 

of 
neu- 
rons 

Mean 
error RMS error Mean %  

of error 
Worst % 
of error 

4 
 0.001561 0.000006 3.41 22.06 

6 
 0.001529 0.000003 2.26 7.01 

8 
 0.002064 0.000007 3.26 18.77 

10 0.001673 0.000004 2.91 15.31 
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hen the steepest decent method is used, the amount  
weight change along the error surface depends on η.  
ually, with low order magnitude of η, there are only 
aller changes to the synaptic weights in the network 
er each cycle. This results in smoother trajectory in 
 error-weight space. Selection of higher order η may 
ults in faster convergence through larger changes in 
 synaptic weights, however the learning rate 

aracteristics may not be a smooth trajectory and such 
lues of η may lead to oscillation in the network 
rformance. One attempt of increasing the speed of 
nvergence, while minimizing the possibility of 
cillation involves adding a term called momentum 
tor to the basic gradient decent formulation. In other 
rds momentum is to magnify the learning rate for the 
t regions of weight space where gradients are more or 
s constant, and to prevent oscillation.  
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Learning 
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paramete
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Mean 
error 

RMS 
error 

Mean 
% of 
error 

Worst 
% of 
error 

0.2 0.00200 0.000008 3.67 17.02 

0.4 
 0.001925 0.000007 3.47 16.53 

0.6 
 0.001853 0.000006 3.46 15.99 

0.8 
 0.001946 0.000006 3.64 15.61 

1.0 
 0.001838 0.000006 2.45 12.69 

1.1 
 0.001647 0.000004 3.10 16.08 

1.19 
 0.001651 0.000003 2.78 10.01 

1.2 
 0.001529 0.000003 2.26 7.01 

1.21 
 0.001625 0.000004 2.78 11.21 

1.3 
63 

erature value of 1.0 gives minimum error value. 
variation of error with temperature is depicted in 
3.  Based on the above observations, following 
um parameters are selected. 

Hidden nodes: 6,    
Learning rate parameter 1.2,  
Momentum factor: 0.9. 
Temperature: 1 

th the above parameters the network was trained  
umber of iterations. Initially high fluctuations were 
ved, after few cycles there is no much change in 
rror value. The network is stopped at that cycle, 
d which the network starts to over-learn and 
s the error to increase once again. This effect of 
s over the error is illustrated in table.4. Optimum 
er of cycles for this network is observed to be 
0. Fig.2 illustrate the variation of mean percentage 
or with the number of iterations. 
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Fibre  
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DOC 
mm 
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N/mm 

Err 
 % 

Ft 
N/mm 

Err
% 

30% 300 0.25 972.4 0.9 159.6 0.52 
30% 450 0.25 119.4 6.3 16.4 6.4 
30% 600 0.25 191.7 3.3 20.7 2.9 
30% 750 0.25 620.8 1.4 51.5 1.53 
40% 450 0.25 164.4 2.3 21.5 2.7 
50% 450 0.25 202.1 3.1 27.9 3.4 

0

C

 

Table 3: Variation of error with temperature for 
glass/epoxy 
Temp 
 

Mean 
error RMS error 

Mean 
% of 
error 

Worst 
% of 
error 

0.8 
 0.001375 0.000003 2.42 16.22 

0.9 
 0.001651 0.000004 2.88 16.50 

1.0 
 0.001529 0.000003 2.26 7.01 

1.1 
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e trained weight values are used to test the model 
 the available desired values. Thus the network and 
 results are compared and it is observed that the 
imum percentage of error occurred is in the order of 
ile the minimum percentage of error occurred is in 
rder of 0.93. This comparison is shown in table 5. 

60%
70%
30%
30%

 

 
 

 
 

ycles Mean 
error 

RMS 
error 

Mean 
% of 
error  

Worst  
% of 
error 

1 
 0.20566 0.073409 328.8 3144. 

100 
 0.07653 0.010809 95.90 326.5 

1000 
 0.01191 0.000242 13.45 47.63 

2000 
 0.003244 0.000015 5.11 15.59 

3000 
 0.002465 0.000011 4.23 15.07 

4000 
 0.002297 0.000010 3.98 14.39 

5000 
 0.002200 0.000009 3.79 13.73 

10000 
 0.002038 0.000007 3.25 13.36 

20000 
 0.002196 0.000006 3.12 13.39 

30000 
 0.002052 0.000006 2.89 11.72 

40000 
 0.001941 0.000006 2.65 8.56 

50000 
 0.001332 0.000003 2.29 7.73 

60000 
 0.001529 0.000003 2.26 7.01 

70000 
 0.002122 0.000008 3.89 16.02 

Table  4: variation of error with 
number of cycles for glass/epoxy 
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 0.001500 0.000004 2.24 8.98 
Table 5: Comparison of network values 
and desired values 
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 45  0.25 250.2 3.1 37.2 2.1 
 450 0.25 301.4 2.3 47.2 3.1 
 450 0.12 53.1 3.4 6.95 2.8 
 450 0.50 226.14 2.6 36.2 2.7 

Fig.3.(a) & (b) Comparison of  tool forces  
with fibre orientation 
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RESULTS AND DISCUSSION 
 
Effect of fibre orientation 
Fig.3 (a) and (b) illustrates the comparison of the cutting 
force (Fc) and feed force (Ft) values predicted by 
Merchant’s equation, FEA model and neural network 
for various fibre orientation. Except at 300 fibre 
orientation the results of Merchants equation are well 
agreeing with other fibre orientations. The cutting forces 
are observed to be decreasing with the increase of fibre 
orientation up to 600 and then gradually increase with 
the fibre orientation. Maximum and minimum cutting 
forces were observed at 300  and  450 fibre orientation 
respectively. 
 
Effect of depth of cut 
Fig.4 (a) and (b) illustrates the comparison of cutting 
force (Fc) and feed force (Ft) values evaluated by 
Merchant’s equation, FEA model and neural network 
for various depth of cuts. The results of Merchant’s 
model are very well matching with the FEA and Neural 
results for 0.12 and 0.25mm depth of cut, however a 
slight variation in feed force was observed at 0.5mm 
depth of cut. A linear increase in cutting forces with 
respect to depth of cut was observed. Minimum cutting 
forces were observed at 0.12-mm depth of cut. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.(a) & (b) Comparison of Tool force with 
 depth of cuts 

 
Effect of fibre percentage. 
Fig.5(a) and (b) illustrate the cutting force values 
predicted by Merchant’s model, FEA and Neural 
Network analysis with respect to fibre percentage. The 
feed force values evaluated by Merchant’s equation are 
exactly matching with the FEA and network results 
Though  feed force values are showing good agreement 

with the FEA and Network results up to 50% fibre 
percentage, a slight variation was observed at 60 and 
70% fibre content. In both the cases the trend was 
observed to be of increasing order, ie with the increase 
of fibre content the cutting forces were increased. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.5.(a) & (b) Comparison of Tool forces on  
various fibre percentages 

 
 

CONCLUSIONS 
 
Though the neural network model was trained well and 
has given mean percentage of error in the order of 3, the 
network cannot determine cutting forces with negligible 
error or zero error. However the work carried out is a 
pioneer to update the model to make it as an error free 
model. For further improvement of the model the 
following suggestions are require to be implemented. 
 
• To evaluate the cutting forces only three variables 

viz fibre percentage, fibre orientation and depth of 
cut were considered for the construction of neural 
network. As the model lacks generality, to improve 
the network the number of input neurons should be 
increased by considering other variables like tool 
angles, tool wear and surface roughness. 

 
• Learning rate parameter is maintained constant 

throughout the iterations. At a given point on the 
error surface one weight may be dropping sharply 
while the other remains virtually constant.. 

 
• Another technique that has been suggested for the 

avoidance of local minima   involves;  injecting 
noise produced by a random generator may be quite 
large. As training proceeds the noise is gradually 
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reduced and ultimately eliminated to achieve 
convergence. 

 
•  If the above suggestions have been considered for 

constructing a neural network, the model will act as 
a powerful tool for predicting the cutting forces 
with negligible error. 

 
• The Neural network results have shown good 

agreement with the FEA results. 
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